4.5 Article

Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c

Journal

NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY
Volume 379, Issue 1, Pages 47-60

Publisher

SPRINGER
DOI: 10.1007/s00210-008-0335-2

Keywords

Curcumin; Hepatocytes; Necrosis; Apoptosis; Lipid peroxidation; Cytochrome c

Funding

  1. Faculty of Pharmacy
  2. Ain Shams University, Cairo, Egypt

Ask authors/readers for more resources

Ethanol-induced hepatocyte necrosis and apoptosis are valid in vitro models to investigate the modulatory effects of hepatoprotective/toxic agents such as curcumin. In this study, suspension and monolayer cultures of isolated rat hepatocytes were used. Levels of trypan blue uptake, reduced glutathione, and lipid peroxidation were quantified. Chromatin condensation, caspase-3 activity, and cytochrome c extramitochondrial translocation were also evaluated. Results revealed that curcumin did not protect against either ethanol-induced necrosis or glutathione depletion. Neither did curcumin reduce caspase-3 activation nor chromatin condensation. In contrast, curcumin induced glutathione depletion, caspase-3 activation, necrosis, and apoptosis. Fortunately, all tested curcumin concentrations (1 mu M-10 mM) diminished the ethanol-induced lipid peroxidation. In addition, 1 mu M curcumin decreased cytochrome c translocation in hepatocyte monolayers. In conclusion, low concentrations of curcumin may protect hepatocytes by reducing lipid peroxidation and cytochrome c release. Conversely, higher concentrations provoke glutathione depletion, caspase-3 activation, and hepatocytotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available