3.9 Article

Food selection in larval fruit flies: dynamics and effects on larval development

Journal

NATURWISSENSCHAFTEN
Volume 101, Issue 1, Pages 61-68

Publisher

SPRINGER
DOI: 10.1007/s00114-013-1129-z

Keywords

Drosophila melanogaster; Foraging; Fruit fly larvae; Nutrition; Specific hunger

Funding

  1. Department of Foreign Affairs and International Trade of Canada
  2. McMaster School for Graduate Studies
  3. Natural Science and Engineering Research Council of Canada

Ask authors/readers for more resources

Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae (Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available