4.5 Article

Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 19, Issue 12, Pages 1242-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb.2415

Keywords

-

Funding

  1. American Lebanese Syrian Associated Charities (ALSAC)
  2. Howard Hughes Medical Institute
  3. St. Jude Cancer Center [5P30CA021765]
  4. US National Institutes of Health (NIH) [R01GM077053]
  5. NIH [R01GM053396]
  6. NIH National Center for Research Resources [RR-15301]
  7. US Department of Energy (US DOE) [W-31-109-ENG-38, DE-AC02-05CH11231]

Ask authors/readers for more resources

Core functions of autophagy are mediated by ubiquitin-like protein (UBL) cascades, in which a homodimeric E1 enzyme, Atg7, directs the UBLs Atg8 and Atg12 to their respective E2 enzymes, Atg3 and Atg10. Crystallographic and mutational analyses of yeast (Atg7-Atg3)(2) and (Atg7-Atg10)(2) complexes reveal noncanonical, multisite E1-E2 recognition in autophagy. Atg7's unique N-terminal domain recruits distinctive elements from the Atg3 and Atg10 'backsides'. This, along with E1 and E2 conformational variability, allows presentation of 'frontside' Atg3 and Atg10 active sites to the catalytic cysteine in the C-terminal domain from the opposite Atg7 protomer in the homodimer. Despite different modes of binding, the data suggest that common principles underlie conjugation in both noncanonical and canonical UBL cascades, whereby flexibly tethered E1 domains recruit E2s through surfaces remote from their active sites to juxtapose the E1 and E2 catalytic cysteines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available