4.5 Article

Mechanism and function of synaptotagmin-mediated membrane apposition

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 18, Issue 7, Pages 813-U92

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb.2075

Keywords

-

Funding

  1. Howard Hughes Medical Institute
  2. US National Institutes of Health (NIH) National Institute of Mental Health [MH061876]
  3. NIH National Institutes on Deafness and Other Communication Disorders [1K99DC011267-01]

Ask authors/readers for more resources

Synaptotagmin-1 is a Ca(2+) sensor that triggers synchronous neurotransmitter release. The first documented biochemical property of synaptotagmin-1 was its ability to aggregate membranes in response to Ca(2+). However, the mechanism and function of this process were poorly understood. Here we show that synaptotagmin-1-mediated vesicle aggregation is driven by trans interactions between synaptotagmin-1 molecules bound to different membranes. We found a strong correlation between the ability of Ca(2+)-bound synaptotagmin-1 to aggregate vesicles and to stimulate SNARE-mediated membrane fusion. Moreover, artificial aggregation of membranes-using non-synaptotagmin proteins-also efficiently promoted fusion of SNARE-bearing liposomes. Finally, using a modified fusion assay, we observed that synaptotagmin-1 drove the assembly of otherwise non-fusogenic individual t-SNARE proteins into fusion-competent heterodimers, independently of aggregation. Thus, membrane aggregation and t-SNARE assembly appear to be two key aspects of fusion reactions that are regulated by Ca(2+)-bound synaptotagmin-1 and catalyzed by SNAREs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available