4.5 Article

Recognition and maturation of effector RNAs in a CRISPR interference pathway

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 18, Issue 6, Pages 688-U83

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb.2042

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Alberta Synchrotron Institute

Ask authors/readers for more resources

In bacteria and archaea, small RNAs derived from clustered, regularly interspaced, short palindromic repeat (CRISPR) loci are involved in an adaptable and heritable gene-silencing pathway. Resistance to phage infection is conferred by the incorporation of short invading DNA sequences into the genome as CRISPR spacer elements separated by short repeat sequences. Processing of long primary transcripts (pre-crRNAs) containing these repeats by an RNA endonuclease generates the mature effector RNAs that interfere with phage gene expression. Here we describe structural and functional analyses of the Thermus thermophilus CRISPR Cse3 endonuclease. High-resolution X-ray structures of Cse3 bound to repeat RNAs model both the pre- and post-cleavage complexes associated with processing the pre-crRNA. These structures establish the molecular basis of a specific CRISPR RNA recognition and suggest the mechanism for generation of effector RNAs responsible for gene silencing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available