4.5 Article

Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 16, Issue 10, Pages 1026-U44

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb.1656

Keywords

-

Ask authors/readers for more resources

Many extracellular signal-regulated kinase (ERK) mitogen-activated protein ( MAP) kinase substrates have been identified, but the diversity of ERK-mediated processes suggests the existence of additional targets. Using a phosphoproteomic approach combining the steroid receptor fusion system, IMAC, 2D-DIGE and phosphomotif-specific antibodies, we detected 38 proteins showing reproducible phosphorylation changes between ERK-activated and ERK-inhibited samples, including 24 new candidate ERK targets. ERK directly phosphorylated at least 13 proteins in vitro. Of these, Nup50 was verified as a bona fide ERK substrate. Notably, ERK phosphorylation of the FG repeat region of Nup50 reduced its affinity for importin-beta family proteins, importin-beta and transportin. Other FG nucleoporins showed a similar functional change after ERK-mediated phosphorylation. Nuclear migration of importin-beta and transportin was impaired in ERK-activated, digitonin-permeabilized cells, as a result of ERK phosphorylation of Nup50. Thus, we propose that ERK phosphorylates various nucleoporins to regulate nucleocytoplasmic transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available