4.5 Article

Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 15, Issue 2, Pages 199-205

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb.1379

Keywords

-

Ask authors/readers for more resources

The AcrA-AcrB-TolC complex is the major multidrug efflux pump in Escherichia coli. The asymmetric structure of the trimeric inner-membrane component AcrB implies functional rotation of the monomers and a peristaltic mode of drug efflux. This mechanism suggests the occurrence of conformational changes in the periplasmic pore domain through the movements of subdomains during cycling of the monomers through the different states loose (L), tight (T) and open (O). We introduced cysteines at the interfaces of potentially moving subdomains, leading to disulfide bond formation as quantified by alkylation of free cysteines and MALDI-TOF analysis. Inhibition of pump function as a result of cross-linking caused increased susceptibility to noxious compounds and reduction of N-phenylnaphthylamine efflux. Regain of function for impaired mutants was obtained upon exposure to the reducing agent DTT. The results support the presence of the asymmetric AcrB trimer in E. coli membranes and the functional rotation mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available