4.8 Article

A Crucial Role of Rh Substituent Ion in Photoinduced Internal Electron Transfer and Enhanced Photocatalytic Activity of CdS-Ti(5.2-x)/6Rhx/2O2 Nanohybrids

Journal

SMALL
Volume 11, Issue 43, Pages 5771-5780

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201501806

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [NRF-2014R1A2A1A10052809]
  2. National Research Foundation of Korea - Korean Government (MEST) [NRF-2010-C1AAA001-2010-0029065]
  3. Cooperative Research Program for Agriculture Science & Technology Development, Rural Development Administration, Republic of Korea [PJ01083001]
  4. National Research Foundation of Korea [2014R1A2A1A10052809, 2010-0029069, 21A20131312351] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The photocatalytic activity and photostability of CdS quantum dot (QD) can be remarkably enhanced by hybridization with Rh-substituted layered titanate nanosheet even at very low Rh substitution rate (<1%). Mesoporous CdS-Ti(5.2-x)/6Rhx/2O2 nanohybrids are synthesized by a self-assembly of exfoliated Ti(5.2-x)/6Rhx/2O2 nanosheets with CdS QDs. The partial substitution of Rh3+/Rh4+ ions for Ti4+ ions in layered titanate is quite effective in enhancing an electronic coupling between hybridized CdS and titanate components via the formation of interband Rh 4d states. A crucial role of Rh substituent ion in the internal electron transfer is obviously evidenced from in situ X-ray absorption spectroscopy showing the elongation of (RhO) bond under visible light irradiation. This is the first spectroscopic evidence for the important role of substituent ion in the photoinduced electron transfer of hybrid-type photocatalyst. The CdS-Ti(5.2-x)/6Rhx/2O2 nanohybrids show much higher photocatalytic activity for H-2 production and better photostability than do CdS and unsubstituted CdS-TiO2 nanohybrid. This result is ascribable to the enhancement of visible light absorptivity, the depression of electron-hole recombination, and the enhanced hole curing of CdS upon Rh substitution. The present study underscores that the hybridization with composition-controlled inorganic nanosheet provides a novel efficient methodology to optimize the photo-related functionalities of semiconductor nanocrystal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available