4.7 Article

Rapid characterization of complex viscous samples at molecular levels by neutral desorption extractive electrospray ionization mass spectrometry

Journal

NATURE PROTOCOLS
Volume 6, Issue 7, Pages 1010-1025

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nprot.2011.337

Keywords

-

Funding

  1. Innovation Method Fund [2008IM040400]
  2. MOST of China [2009DFA30800, 2009DFA41880]

Ask authors/readers for more resources

In this protocol, the sample (which could be a bulk or heterogeneous fluid, or a greasy surface) is treated with a neutral desorption (ND) sampling gas beam, and the resulting analyte mixtures are directly characterized by extractive electrospray ionization mass spectrometry (EESI-MS). The ND device can be specifically constructed such that the sampling gas beam is bubbled through the liquid sample (microjet sampling) or directed to impact the sample surface (e. g., for the analysis of a material like cheese). The ND-EESI-MS analysis process requires no sample pretreatment because it can tolerate an extremely complex matrix. ND-EESI-MS allows real-time, online chemical profiling of highly viscous samples under ambient conditions. Both volatile and nonvolatile analytes from viscous samples can easily be detected and quantified by ND-EESI-MS, thereby providing an MS-based analytical platform for multiple disciplines (e. g., for the food industry, for drug discovery, and for the biological and life sciences). Here we describe the ND-EESI-MS protocol for viscous sample analysis, including the experimental design, equipment setup, reagent preparation, data acquisition and analysis steps. The data collection process takes <1 min per sample, although the time required for the whole procedure, which largely depends on the experimental preparation processes, might be considerably longer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available