4.7 Article

Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells

Journal

NATURE PROTOCOLS
Volume 6, Issue 11, Pages 1818-1833

Publisher

NATURE PORTFOLIO
DOI: 10.1038/nprot.2011.392

Keywords

-

Funding

  1. National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases) [1R01DK079109]
  2. European Molecular Biology Organization
  3. Chinese Scholarship Council [2009635108]

Ask authors/readers for more resources

Knowledge of the in vivo levels, distribution and flux of ions and metabolites is crucial to our understanding of physiology in both healthy and diseased states. The quantitative analysis of the dynamics of ions and metabolites with subcellular resolution in vivo poses a major challenge for the analysis of metabolic processes. Genetically encoded Forster resonance energy transfer (FRET) sensors can be used for real-time in vivo detection of metabolites. FRET sensor proteins, for example, for glucose, can be targeted genetically to any cellular compartment, or even to subdomains (e.g., a membrane surface), by adding signal sequences or fusing the sensors to specific proteins. The sensors can be used for analyses in individual mammalian cells in culture, in tissue slices and in intact organisms. Applications include gene discovery, high-throughput drug screens or systematic analysis of regulatory networks affecting uptake, efflux and metabolism. Quantitative analyses obtained with the help of FRET sensors for glucose or other ions and metabolites provide valuable data for modeling of flux. Here we provide a detailed protocol for monitoring glucose levels in the cytosol of mammalian cell cultures through the use of FRET glucose sensors; moreover, the protocol can be used for other ions and metabolites and for analyses in other organisms, as has been successfully demonstrated in bacteria, yeast and even intact plants. The whole procedure typically takes similar to 4 d including seeding and transfection of mammalian cells; the FRET-based analysis of transfected cells takes similar to 5 h.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available