4.7 Article

PCR-amplification of GC-rich regions: 'slowdown PCR'

Journal

NATURE PROTOCOLS
Volume 3, Issue 8, Pages 1312-1317

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nprot.2008.112

Keywords

-

Ask authors/readers for more resources

The polymerase chain reaction (PCR) technique has become an indispensable method in molecular research. However, PCR-amplification of GC-rich templates is often hampered by the formation of secondary structures like hairpins and higher melting temperatures. We present a novel method termed 'Slowdown PCR', which allows the successful PCR-amplification of extremely GC-rich (483%) DNA targets. The protocol relies on the addition of 7-deaza-2'-deoxyguanosine, a dGTP analog to the PCR mixture and a novel standardized cycling protocol with varying temperatures. The latter consists of a generally lowered ramp rate of 2.5 degrees C s(-1) and a low cooling rate of 1.5 degrees C s(-1) for reaching an annealing temperature and is run for 48 cycles. We established this protocol as a versatile method not only for amplification of extremely GC-rich regions, but also for routine DNA diagnostics and pharmacogenetics for templates with different annealing temperatures. The protocol takes 5 h to complete.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available