4.8 Article

Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO2 and Hollow SnO/SnO2 and SnO2 Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties

Journal

SMALL
Volume 11, Issue 36, Pages 4673-4681

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201500940

Keywords

-

Funding

  1. Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Ministry of Trade, Industry & Energy, Republic of Korea [201320200000420]

Ask authors/readers for more resources

Nanofibers with a unique structure comprising Sn@void@SnO/SnO2 yolk-shell nanospheres and hollow SnO/SnO2 and SnO2 nanospheres are prepared by applying the nanoscale Kirkendall diffusion process in conventional electrospinning process. Under a reducing atmosphere, post-treatment of tin 2-ethylhexanoate-polyvinylpyrrolidone electrospun nanofibers produce carbon nanofibers with embedded spherical Sn nanopowders. The Sn nanopowders are linearly aligned along the carbon nanofiber axis without aggregation of the nanopowders. Under an air atmosphere, oxidation of the Sn-C composite nanofibers produce nanofibers comprising Sn@void@SnO/SnO2 yolk-shell nanospheres and hollow SnO/SnO2 and SnO2 nanospheres, depending on the post-treatment temperature. The mean sizes of the hollow nanospheres embedded within tin oxide nanofibers post-treated at 500 degrees C and 600 degrees C are 146 and 117 nm, respectively. For the 250th cycle, the discharge capacities of the nanofibers prepared by the nanoscale Kirkendall diffusion process post-treated at 400 degrees C, 500 degrees C, and 600 degrees C at a high current density of 2 A g(-1) are 663, 630, and 567 mA h g(-1), respectively. The corresponding capacity retentions are 77%, 84%, and 78%, as calculated from the second cycle. The nanofi bers prepared by applying the nanoscale Kirkendall diffusion process exhibit superior electrochemical properties compared with those of the porous-structured SnO2 nanofibers prepared by the conventional post-treatment process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available