4.8 Article

NMR profiling of quantum electron solids in high magnetic fields

Journal

NATURE PHYSICS
Volume 10, Issue 9, Pages 648-652

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3031

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research [26400344] Funding Source: KAKEN

Ask authors/readers for more resources

When the motion of electrons is restricted to a plane under a perpendicular magnetic field, a variety of quantum phases emerge at low temperatures, the properties of which are dictated by the Coulomb interaction and its interplay with disorder. At very strong magnetic field, the sequence of fractional quantum Hall liquid phases(1) terminates in an insulating phase, which is widely believed to be due to the solidification of electrons into domains possessing Wigner crystal(2) order(3-11). The existence of such Wigner crystal domains is signalled by the emergence of microwave pinning-mode resonances(10,11), which reflect the mechanical properties characteristic of a solid. However, the most direct manifestation of the broken translational symmetry accompanying the solidification-the spatial modulation of particles' probability amplitudes-has not been observed yet. Here, we demonstrate that nuclear magnetic resonance provides a direct probe of the density topography of electron solids in the integer and fractional quantum Hall regimes. The data uncover quantum and thermal fluctuations of lattice electrons resolved on the nanometre scale. Our results pave the way to studies of other exotic phases with non-trivial spatial spin/charge order.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available