4.8 Article

Observation of spontaneous Brillouin cooling

Journal

NATURE PHYSICS
Volume 8, Issue 3, Pages 203-207

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS2206

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency (DARPA)
  2. Air Force Office of Scientific Research (AFOSR)
  3. National Science Foundation

Ask authors/readers for more resources

Although bolometric- and ponderomotive-induced deflection of device boundaries are widely used for laser cooling, the electrostrictive Brillouin scattering of light from sound was considered an acousto-optical amplification-only process(1-7). It was suggested that cooling could be possible in multi-resonance Brillouin systems(5-8) when phonons experience lower damping than light(8). However, this regime was not accessible in electrostrictive Brillouin systems(1-3,5,6) as backscattering enforces high acoustical frequencies associated with high mechanical damping(1). Recently, forward Brillouin scattering(3) in microcavities(7) has allowed access to low-frequency acoustical modes where mechanical dissipation is lower than optical dissipation, in accordance with the requirements for cooling(8). Here we experimentally demonstrate cooling via such a forward Brillouin process in a microresonator. We show two regimes of operation for the electrostrictive Brillouin process: acoustical amplification as is traditional and an electrostrictive Brillouin cooling regime. Cooling is mediated by resonant light in one pumped optical mode, and spontaneously scattered resonant light in one anti-Stokes optical mode, that beat and electrostrictively attenuate the Brownian motion of the mechanical mode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available