4.8 Article

Universality beyond power laws and the average avalanche shape

Journal

NATURE PHYSICS
Volume 7, Issue 4, Pages 316-320

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1884

Keywords

-

Funding

  1. CNR
  2. DOE-BES
  3. CNPq
  4. CAPES
  5. FAPERJ
  6. FAPERGS

Ask authors/readers for more resources

The study of critical phenomena and universal power laws has been one of the central advances in statistical mechanics during the second half of the past century, explaining traditional thermodynamic critical points(1), avalanche behaviour near depinning transitions(2,3) and a wide variety of other phenomena(4). Scaling, universality and the renormalization group claim to predict all behaviour at long length and timescales asymptotically close to critical points. In most cases, the comparison between theory and experiments has been limited to the evaluation of the critical exponents of the power-law distributions predicted at criticality. An excellent area for investigating scaling phenomena is provided by systems exhibiting crackling noise, such as the Barkhausen effect in ferromagnetic materials(5). Here we go beyond power-law scaling and focus on the average functional form of the noise emitted by avalanches-the average temporal avalanche shape(4). By analysing thin permalloy films and improving the data analysis methods, our experiments become quantitatively consistent with our calculation for the multivariable scaling function in the presence of a demagnetizing field and finite field-ramp rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available