4.8 Article

Emergent crystallinity and frustration with Bose-Einstein condensates in multimode cavities

Journal

NATURE PHYSICS
Volume 5, Issue 11, Pages 845-850

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1403

Keywords

-

Funding

  1. NSF [PHY08-47469, DMR09-06780]
  2. AFOSR [FA9550-09-1-0079]
  3. DOE [DE-FG02-07ER46453]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [906780] Funding Source: National Science Foundation
  6. Division Of Physics
  7. Direct For Mathematical & Physical Scien [0847469, 1262062] Funding Source: National Science Foundation

Ask authors/readers for more resources

We propose that condensed-matter phenomena involving the spontaneous emergence and dynamics of crystal lattices can be realized using Bose-Einstein condensates coupled to multimode optical cavities. It is known that, in the case of a transversely pumped single-mode cavity, the atoms crystallize at either the even or the odd antinodes of the cavity mode at sufficient pump laser intensity, thus spontaneously breaking a discrete translational symmetry. Here we demonstrate that, in multimode cavities, crystallization involves the spontaneous breaking of a continuous translational symmetry, through a variant of Brazovskii's transition, thus paving the way for realizations of compliant lattices and associated phenomena, such as dislocations, frustration, glassiness and even supersolidity, in ultracold atomic settings, where quantum effects have a dominant role. We apply a functional-integral formalism to explore the role of fluctuations in this correlated many-body system, to calculate their effect on the threshold for ordering, and to determine their imprint on the correlations of the light emitted from the cavity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available