4.8 Article

Role of column density in the formation of stars and black holes

Journal

NATURE PHYSICS
Volume 6, Issue 2, Pages 96-98

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1484

Keywords

-

Ask authors/readers for more resources

The stellar mass in disc galaxies scales approximately with the fourth power of the rotation velocity, and the masses of the central black holes in galactic nuclei scale approximately with the fourth power of the bulge velocity dispersion. It is shown here that these relations can be accounted for if, in a forming galaxy with an isothermal mass distribution, gas with a column density above about 8M(circle dot) pc(-2) goes into stars, whereas gas with a column density above about 2 g cm(-2) (10(4) M(circle dot) pc(-2)) goes into a central black hole. The lower critical value is close to the column density of about 10M(circle dot) pc(-2) at which atomic gas becomes molecular, and the upper value agrees approximately with the column density of about 1gcm(-2) at which the gas becomes optically thick to its cooling radiation. These results are plausible because molecule formation is evidently necessary for star formation, and because the onset of a high optical depth in a galactic nucleus may suppress continuing star formation and favour the growth of a central black hole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available