4.8 Article

Nonlinear response of the vacuum Rabi resonance

Journal

NATURE PHYSICS
Volume 5, Issue 2, Pages 105-109

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1154

Keywords

-

Funding

  1. Yale University
  2. LPS/NSA-ARO [W911NF-05-1-0365]
  3. NSF [DMR-0653377, DMR-0603369, PHY-0653073]
  4. Academy of Finland

Ask authors/readers for more resources

On the level of single atoms and photons, the coupling between atoms and the electromagnetic field is typically very weak. By using a cavity to confine the field, the strength of this interaction can be increased by many orders of magnitude, to a point where it dominates over any dissipative process. This strong-coupling regime of cavity quantum electrodynamics(1,2) has been reached for real atoms in optical cavities(3), and for artificial atoms in circuit quantum electrodynamics(4) and quantum dot systems(5,6). A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity, an effect known as vacuum Rabi splitting. The circuit quantum electrodynamics architecture is ideally suited for going beyond this linear-response effect. Here, we show that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet and the appearance of extra peaks with the characteristic root n spacing of the Jaynes-Cummings ladder. These findings constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available