4.8 Article

Continuous-variable quantum cryptography using two-way quantum communication

Journal

NATURE PHYSICS
Volume 4, Issue 9, Pages 726-730

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys1018

Keywords

-

Funding

  1. 6th European Community Framework Programme [MOIF-CT-2006-039703]
  2. W.M. Keck centre

Ask authors/readers for more resources

Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a 'hardware solution' for enhancing the security thresholds of these protocols. This is possible by extending themto two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available