4.8 Article

Random organization in periodically driven systems

Journal

NATURE PHYSICS
Volume 4, Issue 5, Pages 420-424

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys891

Keywords

-

Ask authors/readers for more resources

Understanding self-organization is one of the key tasks for controlling and manipulating the structure of materials at the micro- and nanoscale. In general, self-organization is driven by interparticle potentials and is opposed by the chaotic dynamics characteristic of many driven non-equilibrium systems. Here we introduce a new model that shows how the irreversible collisions that generally produce diffusive chaotic dynamics can also cause a system to self-organize to avoid future collisions. This can lead to a self-organized non-fluctuating quiescent state, with a dynamical phase transition separating it from fluctuating diffusing states. We apply the model to recent experiments on periodically sheared particle suspensions where a transition from reversible to irreversible behaviour was observed. New experiments presented here exhibit remarkable agreement with this simple model. More generally, the model and experiments provide new insights into how driven systems can self-organize.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available