4.8 Article

Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene

Journal

NATURE PHYSICS
Volume 4, Issue 8, Pages 627-630

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys1022

Keywords

-

Ask authors/readers for more resources

The honeycomb lattice of graphene is a unique two-dimensional system where the quantum mechanics of electrons is equivalent to that of relativistic Dirac fermions(1,2). Novel nanometre-scale behaviour in this material, including electronic scattering(3,4), spin-based phenomena(5) and collective excitations(6), is predicted to be sensitive to charge-carrier density. To probe local, carrier-density-dependent properties in graphene, we have carried out atomically resolved scanning tunnelling spectroscopy measurements on mechanically cleaved graphene flake devices equipped with tunable back-gate electrodes. We observe an unexpected gap-like feature in the graphene tunnelling spectrum that remains pinned to the Fermi level (E-F) regardless of graphene electron density. This gap is found to arise from a suppression of electronic tunnelling to graphene states near E F and a simultaneous giant enhancement of electronic tunnelling at higher energies due to a phonon-mediated inelastic channel. Phonons thus act as a 'floodgate' that controls the flow of tunnelling electrons in graphene. This work reveals important new tunnelling processes in gate-tunable graphitic layers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available