4.8 Article

High-responsivity graphene/silicon-heterostructure waveguide photodetectors

Journal

NATURE PHOTONICS
Volume 7, Issue 11, Pages 888-891

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nphoton.2013.241

Keywords

-

Funding

  1. Hong Kong Research Grants Council (RGC) [CUHK1/CRF/12G, CUHK4179/10E, SEG-CUHK01, CUHK4165/12E, AoE/P-02/12]
  2. National Natural Science Foundation of China (NSFC)/RGC Joint Research Scheme [N_CUHK405/12]
  3. NSFC [60990314, 60928009, 61229401]
  4. Hong Kong RGC PhD Fellowship

Ask authors/readers for more resources

Graphene-based photonic devices, such as ultrafast photodetectors, optical modulators and tunable surface plasmon polariton devices, have experienced rapid development in recent years(1-6) because they benefit greatly from graphene's strong field-controlled optical response(7,8). Here, we demonstrate a graphene/silicon-heterostructure photodiode formed by integrating graphene onto a silicon optical waveguide on a siliconon-insulator (SOI) with a near to mid-infrared operational range. The waveguide enables absorption of evanescent light that propagates parallel to the graphene sheet, which results in a responsivity as high as 0.13 A W-1 at a 1.5 V bias for 2.75 mu m light at room temperature. A photocurrent dependence on bias polarity was observed and attributed to two distinct mechanisms for optical absorption, that is, direct and indirect transitions in graphene at 1.55 mu m and 2.75 mu m, respectively. Our result demonstrates the use of in-plane absorption in a graphene-monolayer structure and the feasibility of exploiting indirect transitions in graphene/silicon-heterostructure waveguides for mid-infrared detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available