4.8 Article

Real-time wavefront shaping through scattering media by all-optical feedback

Journal

NATURE PHOTONICS
Volume 7, Issue 11, Pages 919-924

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2013.248

Keywords

-

Funding

  1. Israel Science Foundation, the European Research Council advanced grant QUAMI

Ask authors/readers for more resources

Controlling light through dynamically varying heterogeneous media is a sought-after goal with important applications ranging from free-space communication to nanosurgery. The underlying challenge is to control a large number of degrees of freedom of the optical wavefront, at timescales shorter than the medium dynamics. Many advances have been reported recently following the demonstration of focusing through turbid samples by wavefront shaping, where spatial light modulators with more than 1,000 degrees of freedom were used. Unfortunately, spatial light modulator-based wavefront shaping requires feedback from a detector or camera and is currently limited to slowly varying samples. Here, we demonstrate a novel approach for wavefront shaping utilizing all-optical feedback. We show that the complex wavefront required to focus light scattered by turbid samples (including thin biological tissues) can be generated at submicrosecond timescales by the process of field self-organization inside a multimode laser cavity, without requiring electronic feedback, spatial light modulators or phase-conjugation crystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available