4.8 Article

Hacking commercial quantum cryptography systems by tailored bright illumination

Journal

NATURE PHOTONICS
Volume 4, Issue 10, Pages 686-689

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2010.214

Keywords

-

Funding

  1. Research Council of Norway [180439/V30]

Ask authors/readers for more resources

The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics(1-4). So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons(5). Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available