4.8 Article

Template Electrosynthesis of High-Performance Graphene Microengines

Journal

SMALL
Volume 11, Issue 29, Pages 3568-3574

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201500008

Keywords

graphene oxide; micromotors; nanomotors; nanomachines; microengines; propulsion; template electrosynthesis

Funding

  1. Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense [HDTRA1-13-1-0002]
  2. Spanish Ministry of Education, Culture, and Sports
  3. EU under REA [PIOF-GA-2012-326476]

Ask authors/readers for more resources

Template-prepared graphene/Pt and graphene/Au tubular microengines, with extremely high electrocatalytic activity and propulsion efficiency, are described. The new bubble-propelled graphene/metal micromotors are synthesized rapidly and inexpensively by the direct electrodeposition of graphene oxide (GO) within the conical pores of a polycarbonate template membrane followed by deposition of the inner metal layer. The presence of high number of edges and defects in the graphene layer results in highly reactive microporous Pt or Au catalytic structures. The high catalytic activity leads to an ultrafast bubble propulsion (as high as 170 body lengths/sec) and operation at extremely low levels (0.1%) of the peroxide fuel. The effect of such dramatically enhanced catalytic surface area on the bubble growth and motor speed has been theoretically modeled. The template-prepared graphene-based microengines display distinct moving trajectories, along with long microbubble tails. The fast catalytic locomotion and attractive performance of the new graphene/Pt micromotors hold considerable promise for diverse applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available