4.8 Article

Manipulation of multiphoton entanglement in waveguide quantum circuits

Journal

NATURE PHOTONICS
Volume 3, Issue 6, Pages 346-350

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2009.93

Keywords

-

Funding

  1. IARPA
  2. EPSRC
  3. QIP IRC
  4. Leverhulme Trust
  5. Engineering and Physical Sciences Research Council [EP/F008023/1, EP/F010524/1] Funding Source: researchfish
  6. EPSRC [EP/F008023/1, EP/F010524/1] Funding Source: UKRI

Ask authors/readers for more resources

On-chip integrated photonic circuits are crucial to further progress towards quantum technologies and in the science of quantum optics. Here we report precise control of single photon states and multiphoton entanglement directly on-chip. We manipulate the state of path-encoded qubits using integrated optical phase control based on resistive elements, observing an interference contrast of 98.2+/-0.3%. We demonstrate integrated quantum metrology by observing interference fringes with two-and four-photon entangled states generated in a waveguide circuit, with respective interference contrasts of 97.2+/-0.4% and 92+/-4%, sufficient to beat the standard quantum limit. Finally, we demonstrate a reconfigurable circuit that continuously and accurately tunes the degree of quantum interference, yielding a maximum visibility of 98.2+/-0.9%. These results open up adaptive and fully reconfigurable photonic quantum circuits not just for single photons, but for all quantum states of light.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available