4.7 Article

Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions

Journal

NATURE NEUROSCIENCE
Volume 21, Issue 10, Pages 1431-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41593-018-0228-8

Keywords

-

Categories

Funding

  1. NIH NINDS [5R01NS096289-02, F31NS103425]
  2. Sloan Foundation
  3. Whitehall Foundation

Ask authors/readers for more resources

The prevailing model of cerebellar learning states that climbing fibers (CFs) are both driven by, and serve to correct, erroneous motor output. However, this model is grounded largely in studies of behaviors that utilize hardwired neural pathways to link sensory input to motor output. To test whether this model applies to more flexible learning regimes that require arbitrary sensorimotor associations, we developed a cerebellar-dependent motor learning task that is compatible with both mesoscale and single-dendrite-resolution calcium imaging in mice. We found that CFs were preferentially driven by and more time-locked to correctly executed movements and other task parameters that predict reward outcome, exhibiting widespread correlated activity in parasagittal processing zones that was governed by these predictions. Together, our data suggest that such CF activity patterns are well-suited to drive learning by providing predictive instructional input that is consistent with an unsigned reinforcement learning signal but does not rely exclusively on motor errors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available