4.7 Article

Circuit level defects in the developing neocortex of Fragile X mice

Journal

NATURE NEUROSCIENCE
Volume 16, Issue 7, Pages 903-U166

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.3415

Keywords

-

Categories

Funding

  1. National Institute of Child Health and Human Development [R01HD054453]
  2. National Institute of Neurological Disorders and Stroke [RC1NS068093]
  3. FRAXA Research Foundation
  4. Dana Foundation

Ask authors/readers for more resources

Subtle alterations in how cortical network dynamics are modulated by different behavioral states could disrupt normal brain function and underlie symptoms of neuropsychiatric disorders, including Fragile X syndrome (FXS). Using two-photon calcium imaging and electrophysiology, we recorded spontaneous neuronal ensemble activity in mouse somatosensory cortex. Unanesthetized Fmr1(-/-) mice exhibited abnormally high synchrony of neocortical network activity, especially during the first two postnatal weeks. Neuronal firing rates were threefold higher in Fmr1(-/-) mice than in wild-type mice during whole-cell recordings manifesting Up/Down states (slow-wave sleep, quiet wakefulness), probably as a result of a higher firing probability during Up states. Combined electroencephalography and calcium imaging experiments confirmed that neurons in mutant mice had abnormally high firing and synchrony during sleep. We conclude that cortical networks in FXS are hyperexcitable in a brain state-dependent manner during a critical period for experience-dependent plasticity. These state-dependent network defects could explain the intellectual, sleep and sensory integration dysfunctions associated with FXS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available