4.7 Article

Computation of linear acceleration through an internal model in the macaque cerebellum

Journal

NATURE NEUROSCIENCE
Volume 16, Issue 11, Pages 1701-1708

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.3530

Keywords

-

Categories

Funding

  1. US National Institutes of Health [EY12814]

Ask authors/readers for more resources

A combination of theory and behavioral findings support a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Using unnatural motion stimuli, which induce incorrect self-motion perception and eye movements, we explored the neural correlates of an internal model that has been proposed to compensate for Einstein's equivalence principle and generate neural estimates of linear acceleration and gravity. We found that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encoded erroneous linear acceleration, as would be expected from the internal model hypothesis, even when no actual linear acceleration occurred. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available