4.7 Article

Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals

Journal

NATURE NEUROSCIENCE
Volume 16, Issue 9, Pages 1191-U50

Publisher

NATURE RESEARCH
DOI: 10.1038/nn.3490

Keywords

-

Categories

Funding

  1. Leona M. and Harry B. Helmsley Charitable Trust
  2. US National Institutes of Health [P01 NS055923, R01 NS058502, NS078097]
  3. Richard and Susan Smith Family Foundation, Chestnut Hill, Massachusetts

Ask authors/readers for more resources

Hox genes controlling motor neuron subtype identity are expressed in rostrocaudal patterns that are spatially and temporally collinear with their chromosomal organization. Here we demonstrate that Hox chromatin is subdivided into discrete domains that are controlled by rostrocaudal patterning signals that trigger rapid, domain-wide clearance of repressive histone H3 Lys27 trimethylation (H3K27me3) polycomb modifications. Treatment of differentiating mouse neural progenitors with retinoic acid leads to activation and binding of retinoic acid receptors (RARs) to the Hox1-Hox5 chromatin domains, which is followed by a rapid domain-wide removal of H3K27me3 and acquisition of cervical spinal identity. Wnt and fibroblast growth factor (FGF) signals induce expression of the Cdx2 transcription factor that binds and clears H3K27me3 from the Hox1-Hox9 chromatin domains, leading to specification of brachial or thoracic spinal identity. We propose that rapid clearance of repressive modifications in response to transient patterning signals encodes global rostrocaudal neural identity and that maintenance of these chromatin domains ensures the transmission of positional identity to postmitotic motor neurons later in development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available