4.7 Article

Regulation of interneuron excitability by gap junction coupling with principal cells

Journal

NATURE NEUROSCIENCE
Volume 16, Issue 12, Pages 1764-1772

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.3569

Keywords

-

Categories

Funding

  1. US National Institutes of Health [01DC004450, F31DC012222, P30 DC005983]

Ask authors/readers for more resources

Electrical coupling of inhibitory interneurons can synchronize activity across multiple neurons, thereby enhancing the reliability of inhibition onto principal cell targets. It is unclear whether downstream activity in principal cells controls the excitability of such inhibitory networks. Using paired patch-clamp recordings, we show that excitatory projection neurons (fusiform cells) and inhibitory stellate interneurons of the dorsal cochlear nucleus form an electrically coupled network through gap junctions containing connexin36 (Cxc36, also called Gjd2). Remarkably, stellate cells were more strongly coupled to fusiform cells than to other stellate cells. This heterologous coupling was functionally asymmetric, biasing electrical transmission from the principal cell to the interneuron. Optogenetically activated populations of fusiform cells reliably enhanced interneuron excitability and generated GABAergic inhibition onto the postsynaptic targets of stellate cells, whereas deep afterhyperpolarizations following fusiform cell spike trains potently inhibited stellate cells over several hundred milliseconds. Thus, the excitability of an interneuron network is bidirectionally controlled by distinct epochs of activity in principal cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available