4.7 Article

A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction

Journal

NATURE NEUROSCIENCE
Volume 15, Issue 3, Pages 406-U89

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.3025

Keywords

-

Categories

Funding

  1. US National Institutes of Health [R01 MH045817, F31 MH079755]

Ask authors/readers for more resources

NMDA receptors (NMDARs) are glutamate-gated ion channels that are present at most excitatory mammalian synapses. The four GluN2 subunits (GluN2A-D) contribute to four diheteromeric NMDAR subtypes that have divergent physiological and pathological roles. Channel properties that are fundamental to NMDAR function vary among subtypes. We investigated the amino acid residues responsible for variations in channel properties by creating and examining NMDARs containing mutant GluN2 subunits. We found that the NMDAR subtype specificity of three crucial channel properties, Mg2+ block, selective permeability to Ca2+ and single-channel conductance, were all controlled primarily by the residue at a single GluN2 site in the M3 transmembrane region. Mutant cycle analysis guided by molecular modeling revealed that a GluN2-GluN1 subunit interaction mediates the site's effects. We conclude that a single GluN2 subunit residue couples with the pore-forming loop of the GluN1 subunit to create naturally occurring variations in NMDAR properties that are critical to synaptic plasticity and learning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available