4.7 Article

Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles

Journal

NATURE NEUROSCIENCE
Volume 15, Issue 2, Pages 243-249

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.3013

Keywords

-

Categories

Funding

  1. US National Institutes of Health [MH 61876]
  2. American Heart Association [11POST5720016]
  3. Epilepsy Foundation [09PRE2060819]

Ask authors/readers for more resources

Synaptotagmin I (syt1) is required for normal rates of synaptic vesicle endo- and exocytosis. However, whether the kinetic defects observed during endocytosis in Syt1 knockout neurons are secondary to defective exocytosis or whether syt1 directly regulates the rate of vesicle retrieval remains unknown. To address this question, we sought to dissociate these two activities. We uncoupled the function of syt1 in exo- and endocytosis in mouse neurons either by re-targeting the protein or via mutagenesis of its tandem C2 domains. The effect of these manipulations on exo- and endocytosis were analyzed using electrophysiology, in conjunction with optical imaging of the vesicle cycle. Our results indicate that syt1 is directly involved in endocytosis. Notably, either of the C2 domains of syt1, C2A or C2B, was able to function as a Ca2+ sensor for endocytosis. Thus, syt1 functions as a dual Ca2+ sensor for both endo- and exocytosis, potentially coupling these two components of the vesicle cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available