4.7 Article

High-accuracy neurite reconstruction for high-throughput neuroanatomy

Journal

NATURE NEUROSCIENCE
Volume 14, Issue 8, Pages 1081-U189

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.2868

Keywords

-

Categories

Funding

  1. Max Planck Society

Ask authors/readers for more resources

Neuroanatomic analysis depends on the reconstruction of complete cell shapes. High-throughput reconstruction of neural circuits, or connectomics, using volume electron microscopy requires dense staining of all cells, which leads even experts to make annotation errors. Currently, reconstruction speed rather than acquisition speed limits the determination of neural wiring diagrams. We developed a method for fast and reliable reconstruction of densely labeled data sets. Our approach, based on manually skeletonizing each neurite redundantly (multiple times) with a visualization-annotation software tool called KNOSSOS, is similar to 50-fold faster than volume labeling. Errors are detected and eliminated by a redundant-skeleton consensus procedure (RESCOP), which uses a statistical model of how true neurite connectivity is transformed into annotation decisions. RESCOP also estimates the reliability of consensus skeletons. Focused reannotation of difficult locations promises a rather steep increase of reliability as a function of the average skeleton redundancy and thus the nearly error-free analysis of large neuroanatomical datasets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available