4.7 Article

The reorganization and reactivation of hippocampal maps predict spatial memory performance

Journal

NATURE NEUROSCIENCE
Volume 13, Issue 8, Pages 995-U122

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.2599

Keywords

-

Categories

Funding

  1. Medical Research Council
  2. Institut de France-Fondation Louis D.
  3. International Brain Research Organization
  4. Saint Edmund Hall College, University of Oxford
  5. MRC [MC_U138197111, MC_U138169944] Funding Source: UKRI
  6. Medical Research Council [MC_U138169944, MC_U138197111] Funding Source: researchfish

Ask authors/readers for more resources

The hippocampus is an important brain circuit for spatial memory and the spatially selective spiking of hippocampal neuronal assemblies is thought to provide a mnemonic representation of space. We found that remembering newly learnt goal locations required NMDA receptor-dependent stabilization and enhanced reactivation of goal-related hippocampal assemblies. During spatial learning, place-related firing patterns in the CA1, but not CA3, region of the rat hippocampus were reorganized to represent new goal locations. Such reorganization did not occur when goals were marked by visual cues. The stabilization and successful retrieval of these newly acquired CA1 representations of behaviorally relevant places was NMDAR dependent and necessary for subsequent memory retention performance. Goal-related assembly patterns associated with sharp wave/ripple network oscillations, during both learning and subsequent rest periods, predicted memory performance. Together, these results suggest that the reorganization and reactivation of assembly firing patterns in the hippocampus represent the formation and expression of new spatial memory traces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available