4.8 Article

Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution

Journal

NATURE NANOTECHNOLOGY
Volume 9, Issue 8, Pages 624-630

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2014.140

Keywords

-

Funding

  1. National Institutes of Health (NIH) Director's New Innovator Award [1DP2OD008693-01]
  2. National Science Foundation CAREER Award [CHE1149670]
  3. March of Dimes Foundation [5-FY10-490]

Ask authors/readers for more resources

Optical tweezers use the momentum of photons to trap and manipulate microscopic objects, contact-free, in three dimensions. Although this technique has been widely used in biology and nanotechnology to study molecular motors, biopolymers and nanostructures, its application to study viruses has been very limited, largely due to their small size. Here, using optical tweezers that can simultaneously resolve two-photon fluorescence at the single-molecule level, we show that individual HIV-1 viruses can be optically trapped and manipulated, allowing multi-parameter analysis of single virions in culture fluid under native conditions. We show that individual HIV-1 differs in the numbers of envelope glycoproteins by more than one order of magnitude, which implies substantial heterogeneity of these virions in transmission and infection at the single-particle level. Analogous to flow cytometry for cells, this fluid-based technique may allow ultrasensitive detection, multi-parameter analysis and sorting of viruses and other nanoparticles in biological fluid with single-molecule resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available