4.8 Article

Gigahertz quantized charge pumping in graphene quantum dots

Journal

NATURE NANOTECHNOLOGY
Volume 8, Issue 6, Pages 417-420

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2013.73

Keywords

-

Funding

  1. European Graphene-based Nanoelectronic Devices project (ICT/FET) [215752]
  2. Engineering and Physical Sciences Research Council/National Physical Laboratory (NPL) Joint Postdoctoral Partnership
  3. NPL Strategic Research Programme
  4. Engineering and Physical Sciences Research Council [EP/I029575/1] Funding Source: researchfish
  5. EPSRC [EP/I029575/1] Funding Source: UKRI

Ask authors/readers for more resources

Single-electron pumps are set to revolutionize electrical metrology by enabling the ampere to be redefined in terms of the elementary charge of an electron(1). Pumps based on lithographically fixed tunnel barriers in mesoscopic metallic systems(2) and normal/superconducting hybrid turnstiles(3) can reach very small error rates, but only at megahertz pumping speeds that correspond to small currents of the order of picoamperes. Tunable barrier pumps in semiconductor structures are operated at gigahertz frequencies(1,4), but the theoretical treatment of the error rate is more complex and only approximate predictions are available(5). Here, we present a monolithic, fixed-barrier single-electron pump made entirely from graphene that performs at frequencies up to several gigahertz. Combined with the record-high accuracy of the quantum Hall effect(6) and proximity-induced Josephson junctions(7), quantized- current generation brings an all-graphene closure of the quantum metrological triangle within reach(8,9). Envisaged applications for graphene charge pumps outside quantum metrology include single-photon generation via electron-hole recombination in electrostatically doped bilayer graphene reservoirs(10), single Dirac fermion emission in relativistic electron quantum optics(11) and read-out of spin-based graphene qubits in quantum information processing(12).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available