4.8 Article

Above-bandgap voltages from ferroelectric photovoltaic devices

Journal

NATURE NANOTECHNOLOGY
Volume 5, Issue 2, Pages 143-147

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2009.451

Keywords

-

Funding

  1. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]
  2. Alexander von Humboldt Foundation
  3. National Science Council, R.O.C. [NSC 98-2119-M-009-016]

Ask authors/readers for more resources

In conventional solid-state photovoltaics, electron-hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1-2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO3. Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available