4.8 Article

Nanomechanical motion measured with an imprecision below that at the standard quantum limit

Journal

NATURE NANOTECHNOLOGY
Volume 4, Issue 12, Pages 820-823

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2009.343

Keywords

-

Funding

  1. National Science Foundation's Physics Frontier Center for Atomic, Molecular and Optical Physics
  2. National Institute of Standards and Technology
  3. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

Nanomechanical oscillators are at the heart of ultrasensitive detectors of force(1), mass(2) and motion(3-7). As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. If the imprecision of a measurement of the displacement of an oscillator(8) is pushed below a scale set by the standard quantum limit, the measurement must perturb the motion of the oscillator by an amount larger than that scale. Here we show a displacement measurement with an imprecision below the standard quantum limit scale. We achieve this imprecision by measuring the motion of a nanomechanical oscillator with a nearly shot-noise limited microwave interferometer(9). As the interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN Hz(-1/2). This measurement is a critical step towards observing quantum behaviour in a mechanical object.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available