4.8 Article

Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness

Journal

NATURE MEDICINE
Volume 19, Issue 3, Pages 345-350

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nm.3106

Keywords

-

Funding

  1. Hearing Health Foundation
  2. Midwest Eye-Banks
  3. National Organization for Hearing Research Foundation
  4. Capita Foundation
  5. US National Institutes of Health

Ask authors/readers for more resources

Hearing impairment is the most common sensory disorder, with congenital hearing impairment present in approximately 1 in 1,000 newborns(1). Hereditary deafness is often mediated by the improper development or degeneration of cochlear hair cells(2). Until now, it was not known whether such congenital failures could be mitigated by therapeutic intervention(3-5). Here we show that hearing and vestibular function can be rescued in a mouse model of human hereditary deafness. An antisense oligonucleotide (ASO) was used to correct defective pre-mRNA splicing of transcripts from the USH1C gene with the c.216G>A mutation, which causes human Usher syndrome, the leading genetic cause of combined deafness and blindness(6,7). Treatment of neonatal mice with a single systemic dose of ASO partially corrects Ush1c c.216G>A splicing, increases protein expression, improves stereocilia organization in the cochlea, and rescues cochlear hair cells, vestibular function and low-frequency hearing in mice. These effects were sustained for several months, providing evidence that congenital deafness can be effectively overcome by treatment early in development to correct gene expression and demonstrating the therapeutic potential of ASOs in the treatment of deafness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available