4.8 Article

Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis

Journal

NATURE MEDICINE
Volume 18, Issue 4, Pages 600-604

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nm.2679

Keywords

-

Funding

  1. Canadian Institutes of Health Research (CIHR)
  2. Crohn's & Colitis Foundation of Canada (CCFC)
  3. US National Institutes of Health [DK62267]
  4. Canadian Foundation for Innovation
  5. Alberta Science and Research Authority
  6. Canadian Association of Gastroenterology/CIHR
  7. Alberta Innovates-Health Solutions (AI-HS)/CCFC
  8. AI-HS

Ask authors/readers for more resources

Inflammatory bowel diseases (IBDs) are chronic relapsing and remitting conditions associated with long-term gut dysfunction resulting from alterations to the enteric nervous system and a loss of enteric neurons(1,2). The mechanisms underlying inflammation-induced enteric neuron death are unknown. Here using in vivo models of experimental colitis we report that inflammation causes enteric neuron death by activating a neuronal signaling complex composed of P2X7 receptors (P2X7Rs), pannexin-1 (Panx1) channels, the Asc adaptor protein and caspases. Inhibition of P2X7R, Panx1, Asc or caspase activity prevented inflammation-induced neuron cell death. Preservation of enteric neurons by inhibiting Panx1 in vivo prevented the onset of inflammation-induced colonic motor dysfunction. Panx1 expression was reduced in Crohn's disease but not ulcerative colitis. We conclude that activation of neuronal Panx1 underlies neuron death and the subsequent development of abnormal gut motility in IBD. Targeting Panx1 represents a new neuroprotective strategy to ameliorate the progression of IBD-associated dysmotility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available