4.8 Article

Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop

Journal

NATURE MEDICINE
Volume 18, Issue 4, Pages 529-537

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nm.2645

Keywords

-

Funding

  1. Novartis Research Foundation
  2. European Research Council (ERC) [243211-PTPsBDC]
  3. Swiss Cancer League
  4. Krebsliga Beider Basel

Ask authors/readers for more resources

New cancer therapies are likely to arise from an in-depth understanding of the signaling networks influencing tumor initiation, progression and metastasis. We show a fundamental role for Src-homology 2 domain-containing phosphatase 2 (SHP2) in these processes in human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancers. Knockdown of SHP2 eradicated breast tumor-initiating cells in xenograft models, and SHP2 depletion also prevented invasion in three-dimensional cultures and in a transductal invasion assay in vivo. Notably, SHP2 knockdown in established breast tumors blocked their growth and reduced metastasis. Mechanistically, SHP2 activated stemness-associated transcription factors, including v-myc myelocytomatosis viral oncogene homolog (c-Myc) and zinc finger E-box binding homeobox 1 (ZEB1), which resulted in the repression of let-7 microRNA and the expression of a set of 'SHP2 signature' genes. We found these genes to be simultaneously activated in a large subset of human primary breast tumors that are associated with invasive behavior and poor prognosis. These results provide new insights into the signaling cascades influencing tumor-initiating cells as well as a rationale for targeting SHP2 in breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available