4.8 Article

A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy

Journal

NATURE MEDICINE
Volume 15, Issue 1, Pages 75-83

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nm.1893

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft
  2. Leducq Foundation and the Fonds der Chemischen Industrie

Ask authors/readers for more resources

The extracellular-regulated kinases ERK1 and ERK2 (commonly referred to as ERK1/2) have a crucial role in cardiac hypertrophy. ERK1/2 is activated by mitogen-activated protein kinase kinase-1 (MEK1) and MEK2 (commonly referred to as MEK1/2)-dependent phosphorylation in the TEY motif of the activation loop, but how ERK1/2 is targeted toward specific substrates is not well understood. Here we show that autophosphorylation of ERK1/2 on Thr188 directs ERK1/2 to phosphorylate nuclear targets known to cause cardiac hypertrophy. Thr188 autophosphorylation requires the activation and assembly of the entire Raf-MEK-ERK kinase cascade, phosphorylation of the TEY motif, dimerization of ERK1/2 and binding to G protein beta gamma subunits released from activated G(q). Thr188 phosphorylation of ERK1/2 was observed in isolated cardiomyocytes induced to undergo hypertrophic growth, in mice upon stimulation of G(q)-coupled receptors or after aortic banding and in failing human hearts. Experiments using transgenic mouse models carrying mutations at the Thr188 phosphorylation site of ERK2 suggested a causal relationship to cardiac hypertrophy. We propose that specific phosphorylation events on ERK1/2 integrate differing upstream signals (Raf1-MEK1/2 or G protein-coupled receptor-G(q)) to induce cardiac hypertrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available