4.8 Article

Enabling direct H2O2 production through rational electrocatalyst design

Journal

NATURE MATERIALS
Volume 12, Issue 12, Pages 1137-1143

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT3795

Keywords

-

Funding

  1. Danish Ministry of Science's UNIK initiative, Catalysis for Sustainable Energy
  2. Danish Council for Strategic Research's project NACORR [12-132695]
  3. EU PF7's initiative Fuel Cell and Hydrogen Joint Undertaking's project CathCat [GA 303492]
  4. Formas [219-2011-959]
  5. Danish National Research Foundation [DNRF54]

Ask authors/readers for more resources

Future generations require more efficient and localized processes for energy conversion and chemical synthesis. The continuous on-site production of hydrogen peroxide would provide an attractive alternative to the present state-of-the-art, which is based on the complex anthraquinone process. The electrochemical reduction of oxygen to hydrogen peroxide is a particularly promising means of achieving this aim. However, it would require active, selective and stable materials to catalyse the reaction. Although progress has been made in this respect, further improvements through the development of new electrocatalysts are needed. Using density functional theory calculations, we identify Pt-Hg as a promising candidate. Electrochemical measurements on Pt-Hg nanoparticles show more than an order of magnitude improvement in mass activity, that is, Ag-1 precious metal, for H2O2 production, over the best performing catalysts in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available