4.8 Article

Sparsity-based single-shot subwavelength coherent diffractive imaging

Journal

NATURE MATERIALS
Volume 11, Issue 5, Pages 455-459

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT3289

Keywords

-

Funding

  1. European Research Council
  2. Leopoldina-the German Academy of Natural Sciences [LPDS 2009-13]
  3. Israel Science Foundation

Ask authors/readers for more resources

Coherent Diffractive Imaging (CDI) is an algorithmic imaging technique where intricate features are reconstructed from measurements of the freely diffracting intensity pattern. An important goal of such lensless imaging methods is to study the structure of molecules that cannot be crystallized. Ideally, one would want to perform CDI at the highest achievable spatial resolution and in a single-shot measurement such that it could be applied to imaging of ultrafast events. However, the resolution of current CDI techniques is limited by the diffraction limit, hence they cannot resolve features smaller than one half the wavelength of the illuminating light. Here, we present sparsity-based single-shot subwavelength resolution CDI: algorithmic reconstruction of subwavelength features from far-field intensity patterns, at a resolution several times better than the diffraction limit. This work paves the way for subwavelength CDI at ultrafast rates, and it can considerably improve the CDI resolution with X-ray free-electron lasers and high harmonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available