4.8 Article

Nanoparticles that communicate in vivo to amplify tumour targeting

Journal

NATURE MATERIALS
Volume 10, Issue 7, Pages 545-552

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT3049

Keywords

-

Funding

  1. National Cancer Institue of the National Institutes of Health [U54 CA 119335, 5-R01-CA124427, U54 CA119349, 5 P30 CA30199-28]
  2. Deutsche Forschungsemeinschaft [SFB 656/C8]
  3. German Cancer Aid [109245]
  4. Whitaker
  5. NSF

Ask authors/readers for more resources

Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of `signalling' modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted `receiving' nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available