4.8 Article

Direct observation of the temporal and spatial dynamics during crumpling

Journal

NATURE MATERIALS
Volume 9, Issue 12, Pages 993-997

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2893

Keywords

-

Funding

  1. United States-Israel Binational Foundation [2004037]
  2. ERC

Ask authors/readers for more resources

Crumpling occurs when a thin deformable sheet is crushed under an external load or grows within a confining geometry. Crumpled sheets have large resistance to compression and their elastic energy is focused into a complex network of localized structures(1). Different aspects of crumpling have been studied theoretically(2,3), experimentally(4,5) and numerically(6,7). However, very little is known about the dynamic evolution of three-dimensional spatial configurations of crumpling sheets. Here we present direct measurements of the configurations of a fully elastic sheet evolving during the dynamic process of crumpling under isotropic confinement. We observe the formation of a network of ridges and vertices into which the energy is localized. The network is dynamic. Its evolution involves movements of ridges and vertices. Although the characteristics of ridges agree with theoretical predictions, the measured accumulation of elastic energy within the entire sheet is considerably slower than predicted. This could be a result of the observed network rearrangement during crumpling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available