4.8 Article

Atomic-scale imaging of individual dopant atoms in a buried interface

Journal

NATURE MATERIALS
Volume 8, Issue 8, Pages 654-658

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2486

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports and Technology Japan (MEXT)
  2. PRESTO
  3. Japan Science and Technology Agency
  4. New Energy and Industrial Technology Development Organization (NEDO)
  5. Japan Society for the Promotion of Science (JSPS)

Ask authors/readers for more resources

Determining the atomic structure of internal interfaces in materials and devices is critical to understanding their functional properties. Interfacial doping is one promising technique for controlling interfacial properties at the atomic scale(1-5), but it is still a major challenge to directly characterize individual dopant atoms within buried crystalline interfaces. Here, we demonstrate atomic-scale plan-view observation of a buried crystalline interface (an yttrium-doped alumina high-angle grain boundary) using aberration-corrected Z-contrast scanning transmission electron microscopy. The focused electron beam transmitted through the off-axis crystals clearly highlights the individual yttrium atoms located on the monoatomic layer interface plane. Not only is their unique two-dimensional ordered positioning directly revealed with atomic precision, but local disordering at the single-atom level, which has never been detected by the conventional approaches, is also uncovered. The ability to directly probe individual atoms within buried interface structures adds new dimensions to the atomic-scale characterization of internal interfaces and other defect structures in many advanced materials and devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available