4.8 Article

Free-standing nanoparticle superlattice sheets controlled by DNA

Journal

NATURE MATERIALS
Volume 8, Issue 6, Pages 519-525

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2440

Keywords

-

Ask authors/readers for more resources

Free-standing nanoparticle superlattices (suspended highly ordered nanoparticle arrays) are ideal for designing metamaterials and nanodevices free of substrate-induced electromagnetic interference. Here, we report on the first DNA-based route towards monolayered free-standing nanoparticle superlattices. In an unconventional way, DNA was used as a 'dry ligand' in a microhole-confined, drying-mediated self-assembly process. Without the requirement of specific Watson-Crick base-pairing, we obtained discrete, free-standing superlattice sheets in which both structure (inter-particle spacings) and functional properties (plasmonic and mechanical) can be rationally controlled by adjusting DNA length. In particular, the edge-to-edge inter-particle spacing for monolayered superlattice sheets can be tuned up to 20 nm, which is a much wider range than has been achieved with alkyl molecular ligands. Our method opens a simple yet efficient avenue towards the assembly of artificial nanoparticle solids in their ultimate thickness limit-a promising step that may enable the integration of free-standing superlattices into solid-state nanodevices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available