4.8 Review

Organic ferroelectrics

Journal

NATURE MATERIALS
Volume 7, Issue 5, Pages 357-366

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat2137

Keywords

-

Ask authors/readers for more resources

Ferroelectricity results from one of the most representative phase transitions in solids, and is widely used for technical applications. However, observations of ferroelectricity in organic solids have until recently been limited to well-known polymer ferroelectrics and only a few low-molecular-mass compounds. Whereas the traditional use of dipolar molecules has hardly succeeded in producing ferroelectricity in general, here we review advances in the synthesis of new organic materials with promising ferroelectric properties near room temperature, using design principles in analogy to inorganic compounds. These materials are based on non-covalent molecules formed by two or more components, in which ferroelectricity arises either from molecular displacements or from the collective transfer of electrons or protons. The principle of using multi-component molecular compounds leads to a much broader design flexibility and may therefore facilitate the development of future functional organics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available